Copied to
clipboard

G = C32⋊Dic5order 180 = 22·32·5

The semidirect product of C32 and Dic5 acting via Dic5/C5=C4

metabelian, soluble, monomial, A-group

Aliases: C32⋊Dic5, C3⋊S3.D5, (C3×C15)⋊6C4, C52(C32⋊C4), (C5×C3⋊S3).2C2, SmallGroup(180,24)

Series: Derived Chief Lower central Upper central

C1C3×C15 — C32⋊Dic5
C1C5C3×C15C5×C3⋊S3 — C32⋊Dic5
C3×C15 — C32⋊Dic5
C1

Generators and relations for C32⋊Dic5
 G = < a,b,c,d | a3=b3=c10=1, d2=c5, ab=ba, cac-1=a-1, dad-1=ab-1, cbc-1=b-1, dbd-1=a-1b-1, dcd-1=c-1 >

9C2
2C3
2C3
45C4
6S3
6S3
9C10
2C15
2C15
9Dic5
6C5×S3
6C5×S3
5C32⋊C4

Character table of C32⋊Dic5

 class 123A3B4A4B5A5B10A10B15A15B15C15D15E15F15G15H
 size 1944454522181844444444
ρ1111111111111111111    trivial
ρ21111-1-1111111111111    linear of order 2
ρ31-111i-i11-1-111111111    linear of order 4
ρ41-111-ii11-1-111111111    linear of order 4
ρ5222200-1-5/2-1+5/2-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2-1+5/2-1+5/2-1-5/2-1+5/2-1-5/2    orthogonal lifted from D5
ρ6222200-1+5/2-1-5/2-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2-1-5/2-1-5/2-1+5/2-1-5/2-1+5/2    orthogonal lifted from D5
ρ72-22200-1+5/2-1-5/21-5/21+5/2-1+5/2-1+5/2-1-5/2-1-5/2-1-5/2-1+5/2-1-5/2-1+5/2    symplectic lifted from Dic5, Schur index 2
ρ82-22200-1-5/2-1+5/21+5/21-5/2-1-5/2-1-5/2-1+5/2-1+5/2-1+5/2-1-5/2-1+5/2-1-5/2    symplectic lifted from Dic5, Schur index 2
ρ940-210044001-2-21-2-211    orthogonal lifted from C32⋊C4
ρ10401-2004400-211-211-2-2    orthogonal lifted from C32⋊C4
ρ11401-200-1-5-1+5001+5/253+2ζ5254+2ζ51-5/254553521-5/21+5/2    complex faithful
ρ1240-2100-1-5-1+50053+2ζ521+5/21-5/254+2ζ51-5/21+5/25455352    complex faithful
ρ13401-200-1+5-1-5001-5/254+2ζ553521+5/253+2ζ525451+5/21-5/2    complex faithful
ρ1440-2100-1-5-1+50053521+5/21-5/25451-5/21+5/254+2ζ553+2ζ52    complex faithful
ρ15401-200-1+5-1-5001-5/254553+2ζ521+5/2535254+2ζ51+5/21-5/2    complex faithful
ρ16401-200-1-5-1+5001+5/253525451-5/254+2ζ553+2ζ521-5/21+5/2    complex faithful
ρ1740-2100-1+5-1-50054+2ζ51-5/21+5/253521+5/21-5/253+2ζ52545    complex faithful
ρ1840-2100-1+5-1-5005451-5/21+5/253+2ζ521+5/21-5/2535254+2ζ5    complex faithful

Permutation representations of C32⋊Dic5
On 30 points - transitive group 30T48
Generators in S30
(1 21 26)(2 27 22)(3 23 28)(4 29 24)(5 25 30)(6 20 15)(7 16 11)(8 12 17)(9 18 13)(10 14 19)
(6 15 20)(7 11 16)(8 17 12)(9 13 18)(10 19 14)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)
(1 6)(2 10)(3 9)(4 8)(5 7)(11 25 16 30)(12 24 17 29)(13 23 18 28)(14 22 19 27)(15 21 20 26)

G:=sub<Sym(30)| (1,21,26)(2,27,22)(3,23,28)(4,29,24)(5,25,30)(6,20,15)(7,16,11)(8,12,17)(9,18,13)(10,14,19), (6,15,20)(7,11,16)(8,17,12)(9,13,18)(10,19,14), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30), (1,6)(2,10)(3,9)(4,8)(5,7)(11,25,16,30)(12,24,17,29)(13,23,18,28)(14,22,19,27)(15,21,20,26)>;

G:=Group( (1,21,26)(2,27,22)(3,23,28)(4,29,24)(5,25,30)(6,20,15)(7,16,11)(8,12,17)(9,18,13)(10,14,19), (6,15,20)(7,11,16)(8,17,12)(9,13,18)(10,19,14), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30), (1,6)(2,10)(3,9)(4,8)(5,7)(11,25,16,30)(12,24,17,29)(13,23,18,28)(14,22,19,27)(15,21,20,26) );

G=PermutationGroup([[(1,21,26),(2,27,22),(3,23,28),(4,29,24),(5,25,30),(6,20,15),(7,16,11),(8,12,17),(9,18,13),(10,14,19)], [(6,15,20),(7,11,16),(8,17,12),(9,13,18),(10,19,14)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30)], [(1,6),(2,10),(3,9),(4,8),(5,7),(11,25,16,30),(12,24,17,29),(13,23,18,28),(14,22,19,27),(15,21,20,26)]])

G:=TransitiveGroup(30,48);

C32⋊Dic5 is a maximal subgroup of   C5⋊F9  D5×C32⋊C4  S32⋊D5  C32⋊Dic10
C32⋊Dic5 is a maximal quotient of   (C3×C15)⋊9C8

Matrix representation of C32⋊Dic5 in GL4(𝔽61) generated by

1000
0100
0001
006060
,
0100
606000
0001
006060
,
34000
272700
0090
005252
,
0010
0001
1000
606000
G:=sub<GL(4,GF(61))| [1,0,0,0,0,1,0,0,0,0,0,60,0,0,1,60],[0,60,0,0,1,60,0,0,0,0,0,60,0,0,1,60],[34,27,0,0,0,27,0,0,0,0,9,52,0,0,0,52],[0,0,1,60,0,0,0,60,1,0,0,0,0,1,0,0] >;

C32⋊Dic5 in GAP, Magma, Sage, TeX

C_3^2\rtimes {\rm Dic}_5
% in TeX

G:=Group("C3^2:Dic5");
// GroupNames label

G:=SmallGroup(180,24);
// by ID

G=gap.SmallGroup(180,24);
# by ID

G:=PCGroup([5,-2,-2,-3,3,-5,10,302,67,323,248,3604]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^10=1,d^2=c^5,a*b=b*a,c*a*c^-1=a^-1,d*a*d^-1=a*b^-1,c*b*c^-1=b^-1,d*b*d^-1=a^-1*b^-1,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of C32⋊Dic5 in TeX
Character table of C32⋊Dic5 in TeX

׿
×
𝔽