metabelian, soluble, monomial, A-group
Aliases: C32⋊Dic5, C3⋊S3.D5, (C3×C15)⋊6C4, C5⋊2(C32⋊C4), (C5×C3⋊S3).2C2, SmallGroup(180,24)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C3×C15 — C5×C3⋊S3 — C32⋊Dic5 |
C3×C15 — C32⋊Dic5 |
Generators and relations for C32⋊Dic5
G = < a,b,c,d | a3=b3=c10=1, d2=c5, ab=ba, cac-1=a-1, dad-1=ab-1, cbc-1=b-1, dbd-1=a-1b-1, dcd-1=c-1 >
Character table of C32⋊Dic5
class | 1 | 2 | 3A | 3B | 4A | 4B | 5A | 5B | 10A | 10B | 15A | 15B | 15C | 15D | 15E | 15F | 15G | 15H | |
size | 1 | 9 | 4 | 4 | 45 | 45 | 2 | 2 | 18 | 18 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | 1 | i | -i | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ4 | 1 | -1 | 1 | 1 | -i | i | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ5 | 2 | 2 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ6 | 2 | 2 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ7 | 2 | -2 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ8 | 2 | -2 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ9 | 4 | 0 | -2 | 1 | 0 | 0 | 4 | 4 | 0 | 0 | 1 | -2 | -2 | 1 | -2 | -2 | 1 | 1 | orthogonal lifted from C32⋊C4 |
ρ10 | 4 | 0 | 1 | -2 | 0 | 0 | 4 | 4 | 0 | 0 | -2 | 1 | 1 | -2 | 1 | 1 | -2 | -2 | orthogonal lifted from C32⋊C4 |
ρ11 | 4 | 0 | 1 | -2 | 0 | 0 | -1-√5 | -1+√5 | 0 | 0 | 1+√5/2 | -ζ53+2ζ52 | -ζ54+2ζ5 | 1-√5/2 | 2ζ54-ζ5 | 2ζ53-ζ52 | 1-√5/2 | 1+√5/2 | complex faithful |
ρ12 | 4 | 0 | -2 | 1 | 0 | 0 | -1-√5 | -1+√5 | 0 | 0 | -ζ53+2ζ52 | 1+√5/2 | 1-√5/2 | -ζ54+2ζ5 | 1-√5/2 | 1+√5/2 | 2ζ54-ζ5 | 2ζ53-ζ52 | complex faithful |
ρ13 | 4 | 0 | 1 | -2 | 0 | 0 | -1+√5 | -1-√5 | 0 | 0 | 1-√5/2 | -ζ54+2ζ5 | 2ζ53-ζ52 | 1+√5/2 | -ζ53+2ζ52 | 2ζ54-ζ5 | 1+√5/2 | 1-√5/2 | complex faithful |
ρ14 | 4 | 0 | -2 | 1 | 0 | 0 | -1-√5 | -1+√5 | 0 | 0 | 2ζ53-ζ52 | 1+√5/2 | 1-√5/2 | 2ζ54-ζ5 | 1-√5/2 | 1+√5/2 | -ζ54+2ζ5 | -ζ53+2ζ52 | complex faithful |
ρ15 | 4 | 0 | 1 | -2 | 0 | 0 | -1+√5 | -1-√5 | 0 | 0 | 1-√5/2 | 2ζ54-ζ5 | -ζ53+2ζ52 | 1+√5/2 | 2ζ53-ζ52 | -ζ54+2ζ5 | 1+√5/2 | 1-√5/2 | complex faithful |
ρ16 | 4 | 0 | 1 | -2 | 0 | 0 | -1-√5 | -1+√5 | 0 | 0 | 1+√5/2 | 2ζ53-ζ52 | 2ζ54-ζ5 | 1-√5/2 | -ζ54+2ζ5 | -ζ53+2ζ52 | 1-√5/2 | 1+√5/2 | complex faithful |
ρ17 | 4 | 0 | -2 | 1 | 0 | 0 | -1+√5 | -1-√5 | 0 | 0 | -ζ54+2ζ5 | 1-√5/2 | 1+√5/2 | 2ζ53-ζ52 | 1+√5/2 | 1-√5/2 | -ζ53+2ζ52 | 2ζ54-ζ5 | complex faithful |
ρ18 | 4 | 0 | -2 | 1 | 0 | 0 | -1+√5 | -1-√5 | 0 | 0 | 2ζ54-ζ5 | 1-√5/2 | 1+√5/2 | -ζ53+2ζ52 | 1+√5/2 | 1-√5/2 | 2ζ53-ζ52 | -ζ54+2ζ5 | complex faithful |
(1 21 26)(2 27 22)(3 23 28)(4 29 24)(5 25 30)(6 20 15)(7 16 11)(8 12 17)(9 18 13)(10 14 19)
(6 15 20)(7 11 16)(8 17 12)(9 13 18)(10 19 14)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)
(1 6)(2 10)(3 9)(4 8)(5 7)(11 25 16 30)(12 24 17 29)(13 23 18 28)(14 22 19 27)(15 21 20 26)
G:=sub<Sym(30)| (1,21,26)(2,27,22)(3,23,28)(4,29,24)(5,25,30)(6,20,15)(7,16,11)(8,12,17)(9,18,13)(10,14,19), (6,15,20)(7,11,16)(8,17,12)(9,13,18)(10,19,14), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30), (1,6)(2,10)(3,9)(4,8)(5,7)(11,25,16,30)(12,24,17,29)(13,23,18,28)(14,22,19,27)(15,21,20,26)>;
G:=Group( (1,21,26)(2,27,22)(3,23,28)(4,29,24)(5,25,30)(6,20,15)(7,16,11)(8,12,17)(9,18,13)(10,14,19), (6,15,20)(7,11,16)(8,17,12)(9,13,18)(10,19,14), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30), (1,6)(2,10)(3,9)(4,8)(5,7)(11,25,16,30)(12,24,17,29)(13,23,18,28)(14,22,19,27)(15,21,20,26) );
G=PermutationGroup([[(1,21,26),(2,27,22),(3,23,28),(4,29,24),(5,25,30),(6,20,15),(7,16,11),(8,12,17),(9,18,13),(10,14,19)], [(6,15,20),(7,11,16),(8,17,12),(9,13,18),(10,19,14)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30)], [(1,6),(2,10),(3,9),(4,8),(5,7),(11,25,16,30),(12,24,17,29),(13,23,18,28),(14,22,19,27),(15,21,20,26)]])
G:=TransitiveGroup(30,48);
C32⋊Dic5 is a maximal subgroup of
C5⋊F9 D5×C32⋊C4 S32⋊D5 C32⋊Dic10
C32⋊Dic5 is a maximal quotient of (C3×C15)⋊9C8
Matrix representation of C32⋊Dic5 ►in GL4(𝔽61) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 60 | 60 |
0 | 1 | 0 | 0 |
60 | 60 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 60 | 60 |
34 | 0 | 0 | 0 |
27 | 27 | 0 | 0 |
0 | 0 | 9 | 0 |
0 | 0 | 52 | 52 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
60 | 60 | 0 | 0 |
G:=sub<GL(4,GF(61))| [1,0,0,0,0,1,0,0,0,0,0,60,0,0,1,60],[0,60,0,0,1,60,0,0,0,0,0,60,0,0,1,60],[34,27,0,0,0,27,0,0,0,0,9,52,0,0,0,52],[0,0,1,60,0,0,0,60,1,0,0,0,0,1,0,0] >;
C32⋊Dic5 in GAP, Magma, Sage, TeX
C_3^2\rtimes {\rm Dic}_5
% in TeX
G:=Group("C3^2:Dic5");
// GroupNames label
G:=SmallGroup(180,24);
// by ID
G=gap.SmallGroup(180,24);
# by ID
G:=PCGroup([5,-2,-2,-3,3,-5,10,302,67,323,248,3604]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^10=1,d^2=c^5,a*b=b*a,c*a*c^-1=a^-1,d*a*d^-1=a*b^-1,c*b*c^-1=b^-1,d*b*d^-1=a^-1*b^-1,d*c*d^-1=c^-1>;
// generators/relations
Export
Subgroup lattice of C32⋊Dic5 in TeX
Character table of C32⋊Dic5 in TeX